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1 Introduction

The so-called alpha representation [1–11] was initially used to introduce dimensional regu-

larization [12, 13] and to prove various mathematical results on Feynman integrals [3–6, 8–

11]. The standard way to analyze convergence of Feynman integrals is to decompose the

initial integration domain of alpha parameters into appropriate subdomains (sectors) and

introduce, in each sector, new variables in such a way that the integrand factorizes, i.e. be-

comes equal to a monomial in new variables times a non-singular function. This procedure

turned out to be successful for Euclidean external momenta, i.e with (
∑

qi)
2 < 0 for any

partial sum, when the sectors of Hepp [3] and Speer [5] were introduced.

However, in practice, one often deals with Feynman integrals on a mass shell or at a

threshold. In this case, Hepp or Speer sectors generally do not provide a factorization of

the integrand so that the analysis of convergence fails within this technique. Therefore,

general theorems on such ‘physical’ Feynman integrals could not be proved up to now.

Recently Binoth and Heinrich introduced sector decompositions of a new kind [14].

(See [15] for a review.) They provided a powerful method of evaluating Feynman inte-

grals numerically in situations with severe UV, IR and collinear divergences. In contrast

to Hepp and Speer sectors, the sectors of [14] are introduced iteratively, according to so-

called sector decomposition strategies. The corresponding algorithm was implemented on a

computer. Although this algorithm was successfully applied to numerically evaluate com-

plicated Feynman integrals and to check existing analytical results (see, e.g. [16–18]) it was

unclear where this iterative procedure stops at some point, i.e. results in the factorization of

the integrands so that one can apply it for numerical evaluation. Indeed, in some examples,

closed loops appear within this algorithm.

The first algorithm guaranteed to terminate was developed by Bogner and

Weinzierl [19]. More precisely, certain strategies within this algorithm guarantee that

closed loops do not appear. The algorithm works at least if squares (
∑

qi)
2 of partial sums

– 1 –
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of the external momenta are either negative or zero.1 (We will formulate a more general

condition in the next section.) The corresponding computer code is public. The second

public algorithm [20] called FIESTA provided one more strategy (Strategy S) for sector

decompositions which also leads to a factorization of the integrand for general Feynman

integrals. It was successfully applied in [21].

The purpose of this paper is to describe Hepp and Speer sectors in an iterative way,

within the modern technique of sector decompositions. In the next section, we describe the

alpha representation and introduce the corresponding graph-theoretical notation. Then,

in section 3, we establish the connection of Hepp and Speer sectors with iterative sector

decomposition. In conclusion, we discuss some perspectives. In appendix, we prove a

theorem stating that Speer sectors are reproduced within Strategy S.

2 Parametric representations and graph-theoretical notation

For a Feynman integral with standard propagators (of the 1/(m2 − k2 − i0)al form) corre-

sponding to a connected graph Γ, the alpha representation has the following form:

FΓ(q1, . . . , qn; d; a1 . . . , aL) =
ia+h(1−d/2)πhd/2

∏

l Γ(al)

×

∫ ∞

0
. . .

∫ ∞

0

∏

l

αal−1
l U

−d/2
Γ eiVΓ/UΓ−i

P

m2
l
αldα1 . . . dαL , (2.1)

where L and h is, respectively, the number of lines (edges) and loops (independent circuits)

of the graph, n + 1 is the number of external vertices, a =
∑

al, and

UΓ =
∑

T∈T 1

∏

l 6∈T

αl , (2.2)

VΓ =
∑

T∈T 2

∏

l 6∈T

αl

(

qT
)2

. (2.3)

In (2.2), the sum runs over trees of the given graph, and, in (2.3), over 2-trees, i.e. maximal

subgraphs that do not involve loops and consist of two connectivity components; qT is

the sum of the external momenta that flow into one of the connectivity components of the

2-tree T . (It does not matter which component is taken because of the conservation law for

the external momenta.) The products of the alpha parameters involved are taken over the

lines that do not belong to the given (2-)tree T . The functions U and V are homogeneous

functions of the alpha parameters with the homogeneity degrees h and h + 1, respectively.

1 Let us stress that Hepp and Speer sectors generally do not provide a resolution of the singularities in

the parameter of dimensional regularization if some sum
P

qi is light-like.
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Figure 1. A two-loop propagator graph.

An overall integration can be performed to obtain another well-known parametric

representation:2

FΓ(q1, . . . , qn; d; a1 . . . , aL) =

(

iπd/2
)h

Γ(a − hd/2)
∏

l Γ(al)

×

∫ ∞

0
. . .

∫ ∞

0

∏

l

αal−1
l δ

(

∑

αl− 1
) U

a−(h+1)d/2
Γ

(

−VΓ+UΓ
∑

m2
l αl

)a−hd/2
dα1 . . . dαL . (2.4)

According to the well-known folklore Cheng-Wu theorem one can choose any sum of the

alpha variables in the argument of the delta function.

We imply that the graph Γ is a connected graph, i.e. any two vertices of Γ can be con-

nected by a path in Γ. However, we are going to consider various subgraphs of the graph and

they can be disconnected, i.e. consist of several connectivity components. A subgraph γ of

Γ is determined by a subset of lines L(γ) and includes all the vertices incident to these lines.

(Sometimes isolated vertices are added to a subgraph. For example, Mathematica produces

isolated vertices as bi-connected components.) The number of loops of a subgraph equals to

h(γ) = L(γ) − V (γ) + c(γ) ,

where V (γ) and c(γ) are, respectively the numbers of the vertices and connectivity

components.

An articulation vertex of a graph Γ is a vertex whose deletion disconnects Γ. Any

graph with no articulation vertices is said to be bi-connected (or, one-vertex-irreducible

(1VI)). Otherwise, it is called one-vertex-reducible (1VR). In other words, in a 1VR graph,

one can distinguish two subsets of its lines and a vertex (an articulation vertex) such that

any path between vertices from these two subsets goes through this vertex. ¿From now on

let us suppose that we are dealing with a 1VI graph. It is natural to treat a single line as

a 1VI graph since we cannot decompose it into two parts.

Any subgraph can be represented as the union of its 1VI components, i.e. maximal

1VI subgraphs. Consider, for example, the two-loop self-energy graph of figure 1. The

subgraphs {1, 2, 5} and {1, 2, 3, 4} are 1VI. The subgraph {1, 2, 3, 5} is 1VR and its 1VI

components are {1, 2, 5} and {3}. The subgraph {1, 2, 3} is 1VR and its 1VI components

are {1}, {2} and {3}.

2 So, the code of [19] works at least if each monomial of the α-variables in the function −VΓ +UΓ

P

m
2
l αl

enters with a negative coefficient. This condition is a little bit relaxed within the code of [20] where

combinations of the type (αi − αj)
2 are also admissible.

– 3 –
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A set f of 1VI subgraphs is called an ultraviolet (UV) forest if the following conditions

hold:

(i) for any pair γ, γ′ ∈ f , we have either γ ⊂ γ′, γ′ ⊂ γ or L(γ ∩ γ′) = ∅;

(ii) if γ1, . . . , γn ∈ f and L(γi ∩ γj) = ∅ for any pair from this family, the subgraph ∪iγ
i

is 1VR.

In other words, the number of loops in ∪iγ
i (where γi are disjoint with respect to lines

and belong to a UV forest) is equal to the sum of the numbers of loops of γi. The term

“UV” is used because the UV divergences are due to the integration over small values of

αl where the exponent in (2.1) is irrelevant and they are generated by the singularities of

the factor U
−d/2
Γ . We are going to show that the resolution of the UV singularities can be

performed by the use of sectors associated with 1VI subgraphs.

For example, the set {1}, {2}, {3} of subgraphs of figure 1 is a UV forest and {1, 2, 5},

{3} is also a UV forest but the set {1}, {2}, {3}, {4} is not a UV forest because the

condition (ii) breaks down.

Let F be a maximal UV forest (i.e. there are no UV forests that include F) of a given

graph Γ. An element γ ∈ F is called trivial if it consists of a single line and is not a loop

line. Any maximal UV forest has h non-trivial and L − h trivial elements.

Let us define the mapping σ : F → L such that σ(γ) ∈ L(γ) and σ(γ) 6∈ L(γ′) for any

γ′ ⊂ γ, γ′ ∈ F . The inverse mapping σ−1 : L → F exists and can be defined as follows:

σ−1(l) is the minimal element of the UV forest F that contains the line l. Let us denote

by γ+ the minimal element of F that strictly includes the given element γ.

For a given maximal UV forest F , let us define the corresponding sector (f -sector) as

DF =
{

α|αl ≤ ασ(γ), l ∈ γ ∈ F
}

. (2.5)

The intersection of two different f -sectors is of measure zero; the union of all the sectors

gives the whole integration domain of the alpha parameters. For a given f -sector, let us

introduce new variables labelled by the elements of F ,

αl =
∏

γ∈F : l∈γ

tγ , (2.6)

where the corresponding Jacobian is
∏

γ t
L(γ)−1
γ . The inverse formula is

tγ =

{

ασ(γ)/ασ(γ+) if γ is not maximal

ασ(γ) if γ is maximal
. (2.7)

Consider, for example, the following maximal UV forest F of figure 1 consisting of

γ1 = {1}, γ2 = {2}, γ3 = {3}, γ4 = {1, 2, 5}, γ5 = Γ. The mapping σ is σ(γ1) =

1, σ(γ2) = 2, σ(γ3) = 3, σ(γ4) = 5, σ(γ5) = 4. The sector associated with this maximal

UV forest is given by DF = {α1,2 ≤ α5 ≤ α4, α3 ≤ α4} and the sector variables are

tγ1 = α1/α5, tγ2 = α2/α5, tγ3 = α3/α4, tγ4 = α5/α4, tγ5 = α4.

All the maximal UV forests of the given graph can be constructed at least in two ways.

– 4 –
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Way 1. We imply that the lines are enumerated. Let us consider the sequence of sub-

graphs γl consisting of lines {1, 2, . . . , l}, respectively, with l = 1, . . . , L. For each l, let us

take the 1VI component of γl that includes the line l. The set of all these components is

a maximal UV forest. Then we construct in a similar way the UV forests for other L! − 1

enumerations of the set of lines. After this we leave only distinct maximal UV forests.

Way 2. Since we consider a 1VI graph we include it into any maximal forest. Let us

delete a line from it. The resulting graph is decomposed as the union of its 1VI components

which we include into the maximal UV forest. Then we continue this process by deleting

a line from some 1VI component which is not a single line, etc.

In the sector corresponding to a given maximal UV forest f , the function UΓ takes

the form

UΓ =
∏

γ∈f

th(γ)
γ [1 + Pf ] , (2.8)

where Pf is a non-negative polynomial and the product is over elements of the given

maximal UV forest f . We will call such a factorization proper.

This factorization formula is proved by constructing an appropriate tree. One uses

the relation
∏

l 6∈T

αl =
∏

γ∈f

th(γ)+c(γ∩T )−c(γ)
γ , (2.9)

where T is a tree or a 2-tree so that the factorization reduces to constructing a tree that

provides the minimal value of the non-negative quantity c(γ ∩ T ) − c(γ). Let T0 be the

tree composed of all trivial elements of the given maximal UV-forest F . In other words,

this tree can be constructed as follows. One uses an order of lines which was used within

Way 1 for the construction of the given maximal UV forest f and includes the given line

in the tree if a loop is not generated. One can observe that this tree T0 provides the zero

value of c(γ ∩ T0) − c(γ) for all the elements of the given maximal forest.

To analyze convergence of the integral (2.1) large values of αl (in particular, to reveal

infrared (IR) divergences) one has to take into account the exponent as well. A possible

way is to separate the integration over every αl into (0, 1) and (1,∞) and then to deal

with each of these 2L regions separately — see, e.g. [10, 11]. This can be enough for a

general analysis but cannot be good from the practical point of view because the number

of the resulting sectors will be too large. A more reasonable approach is to turn [5] to

an integral with a compact integration domain, where both UV and IR divergences are

somehow mixed up and manifest themselves as divergences at small values of parameters

of integration. We will do this in the next section.

3 Strategies to reproduce Hepp and Speer sectors

In [14], the starting point is the alpha representation (2.4) where primary sectors are

introduced. The set of primary sectors corresponds to the different choices of a line in

the given graph. At this step, one chooses a line l = 1, . . . , L and defines a sector ∆l by

αi ≤ αl, i 6= l and the sector variables by αi = tiαl, i 6= l. The integration over αl is

– 5 –
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then taken due to the delta function whose argument is supposed to be the sum of all the

variables minus one.

One can also start directly from (2.1) and introduce primary sectors αi ≤ αl, i 6= l

there with the new variables, αi = xl αl belonging to a unit hypercube. For example, in

the case of l = L, using the homogeneity properties of the functions in the representation

and explicitly integrating over αL we obtain the contribution of ∆L as

F (L) =

(

iπd/2
)h

Γ(a − hd/2)
∏

l Γ(al)

∫ 1

0
. . .

∫ 1

0

L−1
∏

l

xal−1
l

×
Û

a−(h+1)d/2
Γ

[

−V̂Γ + ÛΓ

(

∑L−1
l=1 m2

l

∏L−1
l=l′ xl′ + m2

L

)]a−hd/2
dx1 . . . dxL−1 , (3.1)

where

ÛΓ = U(x1, . . . , xL−1, 1) , V̂Γ = VΓ(x1, . . . , xL−1, 1) . (3.2)

Without loss of generality let us consider only this primary sector.

Let us remind that, for the case of non-zero masses, a general analysis of the factor-

ization is not known even for Euclidean external momenta. Let us therefore turn to the

pure massless case, as in [5]. Let us describe how sectors of Speer type can be introduced

in such a way that the whole integrand of (3.1) has a proper factorization. As we could

see in the previous section, the use of f -sectors provides a proper factorization (2.8) of the

function U so that the factor Û
a−(h+1)d/2
Γ in (3.1) is properly factorized. However, these

sectors generally do not provide a factorization of the second non-trivial factor. This can

be seen using our example of figure 1. We are going to use smaller sectors which are in

fact obtained from the f -sectors generated by the graph Γ by a further decomposition.

Let Γ∞ be the graph obtained from Γ by adding a new vertex v∞ and connecting it

with all the external n + 1 vertices by additional lines. These lines are only auxiliary and

no propagators correspond to them. When writing down the function U for Γ∞, let us

include, by definition, these additional lines into any tree. Then in the case of two external

vertices (i.e. for n = 1) we have

VΓ = UΓ∞q2

where q is the only external momentum.

Let us define sectors in a way similar to the previous section but using, instead of

1VI subgraphs, another set of subgraphs which we call s-irreducible. If a subgraph γ does

not have all the external vertices in the same connectivity component and if it is 1VI let

us call it s-irreducible as well. If a subgraph γ has all the external vertices in the same

connectivity component let us call it s-irreducible if the graph γ∞ is 1VI. We will call an

s-irreducible subgraph trivial if it is a single line which is not a loop line and which does

not connect the external vertices.

The maximal forests consisting of s-irreducible subgraphs can be constructed again by

Way 1 or Way 2.

We define sectors (we name them Speer sectors) in a way similar to the sectors dis-

cussed in the previous section. We introduce sector variables by the same formula (2.6) as

– 6 –
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above. The factorization of the function V follows from its definition (2.3) and the auxil-

iary relation (2.9). The 2-tree that provides a minimal value of the non-negative quantity

c(γ ∩ T ) − c(γ) can be constructed by a procedure similar to the procedure used for the

function U : one considers the lines in the order used for the construction of the given

f -forest by Way 1 and includes the given line into the 2-tree if a loop is not generated and

if this is not the line whose inclusion would connect all the external vertices.

By construction, for such a 2-tree T0, we obtain c(γ∩T0)− c(γ) = θ(γ) where θ(γ) = 1

if the external vertices are connected in γ and θ(γ) = 0 otherwise. Hence we obtain a

proper factorization

VΓ =
∏

γ∈f

th(γ)+θ(γ)
γ

[

q2
T0

+ PV

]

, (3.3)

where PV is a non-negative polynomial.

Obviously, the Speer sectors can be obtained from those associated with the graph Γ by

a further decomposition, so that the factorization of the function UΓ in the corresponding

variables also holds and has the form similar to (2.8) with the same exponents.

Let us turn to the modern strategies of sector decompositions. After introducing

primary sectors, one obtains the contribution (3.1) and other L − 1 contributions of the

same type. At each step, one chooses a subset of the indices ν = {i1, . . . , ik} and an

index ir from this subset and defines a sector xi ≤ xir , i 6= ir and the sector variables by

xi = x′
ixir , i 6= ir To formulate a strategy of introducing iterative sectors one needs to fix

rules for determining subsets ν at every recursive step.3

The first known sector decomposition strategy is described in [14]; three strategies

guaranteed to terminate (A, B and C) and one strategy not guaranteed to terminate (X)

are presented in [19]; they all are based on analyzing the functions U and V and choosing

a subset of indices depending on their properties. Strategy S [20] is a bit different and

is based on analyzing the polytopes of weights and their lowest faces. We present its

definition in appendix.

We can now redefine the Hepp and Speer sectors iteratively. With the Hepp sectors,

the situation is obvious: they are reproduced when we consider maximal subsets of lines

at each step, i.e. with one line less than before this.

To reproduce the choice of Speer sectors within a sector decomposition let us remind

the Way 2 to construct sectors. One has just to consider only subsets of the indices

ν = {i1, . . . , ik} that correspond to s-irreducible subgraphs.

We compared the number of sectors in numerous examples and discovered that the set

of the sectors within Strategy S and the set of the Speer sectors was always the same. In

particular, this was observed in the two examples of massless vertex diagrams shown in fig-

ure 2 at Euclidean external momenta, and in rather non-trivial examples of three four-loop

propagator diagrams of figure 3 which are the most complicated master integrals among all

four-loop massless propagator integrals.4 The results of this analysis are shown in table 1

where the number of the sectors is shown. The first column stands for Strategy S and Speer

3Some strategies use more general sectors by comparing the integrations variables in different powers.
4 Analytical results in expansion in ε up to ε

0 for these diagrams will be published soon [22].

– 7 –
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v2 v3

Figure 2. Vertex off-shell diagrams.

m61 m62 m63

Figure 3. Most complicated four-loop propagator diagrams.

diagram S X

v2 102 102

v3 2160 2251

m61 26208 32620

m62 26304 27540

m63 27336 failed

Table 1. Comparison of numbers of sectors for different strategies.

sectors; the resulting number of the sectors is the same. For comparison, we included the

second column for Strategy X [19] which has been proved to be very effective in a number of

complicated calculations. Here ‘failed’ means that a factorization by sector decomposition

has not been achieved for a reasonable amount of time (at least not for one day.)

Motivated by these observations, we formulated and proved a statement that for Feyn-

man integrals with Euclidean external momenta Strategy S and Speer sectors lead to the

same sector decomposition.

A proof of this theorem is presented in the appendix. Let us stress that the theorem re-

lates strategies which originated from absolutely independent mathematical constructions.

4 Conclusion

In fact, our motivation to recall Speer sectors was to suggest to use them within FIESTA [20]

since they are optimal for Feynman integrals at all Euclidean external momenta. However it

turned out that these sectors are reproduced within Strategy S. Therefore we can conclude

– 8 –



J
H
E
P
0
5
(
2
0
0
9
)
0
0
4

that Strategy S has chances to be an optimal universal strategy which always terminates

and provides a proper factorization.

Let us remind that Speer sectors have a certain physical meaning: the integration

over the sector variable tγ is responsible for UV divergences and, if γ contains all the

external vertices, for off-shell IR divergences. If on-shell and collinear divergences are

present, Speer sectors are no longer applicable. Then one can use sector decompositions,

e.g. within Strategy S, and this strategy could help to reveal the physical meaning of the

sectors. To do this one might start with analyzing simple typical diagrams with on-shell

or/and collinear divergences.
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A A proof of the equivalence of Strategy S and Speer sectors

Let us first remind the definition of Strategy S [20]. We consider the set of weights W of

the polynomial VΓ defined as the set of all possible (a1, . . . , an) where cxa1

1 . . . xan
n is one

of the monomials of VΓ. We will say that a weight is higher than another one if their

difference is a set of non-negative numbers. If VΓ has a unique lowest weight, a monomial

can be factorized out, so no sector decomposition is needed. Hence it becomes reasonable

to try to minimize the number of lowest weights of VΓ. We consider the convex hull of the

lowest weights of W and choose one of its facets5 G visible from the origin. Now let us

take the normal vector v to G, consider the set I = {i|vi 6= 0} and separate the integration

region in (3.1) into m parts by

Sl = {(x1, . . . , xn)|x
ail

il
≥ x

aik

ik
∀ik ∈ I},

where {i1, . . . im} = I, n = L − 1, and the exponents ai are defined by

















ai1

ai2

ai3
...

aim

















=

















0 1 1 . . . 1

1 0 1 . . . 1

1 1 0 . . . 1
...

...
...

...

1 1 1 . . . 0

















−1 















vi1

vi2

vi3
...

vim

















(A.1)

5A face of a convex polytope is its intersection with a hyperplane such that the polytope is contained in

one of the corresponding half-spaces. A facet is a face of maximum dimension.

– 9 –
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The variable replacement in Sl is defined by

xi = x′
i∀i 6∈ I

xil = (x′)
vil

il

xik = (x′)
vik

il
x′

ik
∀i ∈ I, k 6= l.

Let us turn back to Speer sectors. We need to introduce a few definitions. For a

subgraph Γ′ we denote the union of its nontrivial s-irreducible components with C(Γ′) and

say that it is the clear version of Γ′. We say that a sequence l1, . . . , lj of lines of Γ′ is admis-

sible if the corresponding sequence of subgraphs Γ = Γ, . . . , Γ{l1,...,lj} = C(Γ\{l1, . . . , lj})

satisfies the following condition: {li+1, . . . , lj} ⊂ C(Γ{l1,...,li−1}\{li}). In other words, it is

possible to be removing those lines one by one according to Speer strategy rules.

Now let us prove an auxiliary statement.

1. The monomials in VΓ are formed from variables corresponding to maximal admissible

sequences of lines and they have the same homogeneity degree;

2. VΓ = xl1 . . . xljVΓ{l1,...,lj}
+ Ṽ, where Ṽ is some function not divisible by xl1 . . . xlj ;

3. For any subgraph Γ′, its line l and another line l′ ∈ Γ′\C(Γ′\{l}) we have C(Γ′\{l}) =

C(Γ′\{l′});

4. Any monomial in Ṽ is divisible by some monomial in VΓ{l1,...,lj}
;

5. For an s-irreducible Γ′ = C(Γ′) the linear span of weights of VΓ′ coincides with the

linear space of all possible weights of monomials with variables corresponding to Γ′.

Observe that if {l1, . . . , lj} is a maximal admissible sequence then the corresponding

function VΓ{l1,...,lj}
is independent of the x-variables.

The first statement is more or less obvious and can be considered as a reformulation

of the definition of V and the second is its direct consequence.

The third statement: the obvious part it that if a line is contained in C(Γ′\{l})

then it belongs to some s-irreducible component not containing l′ therefore C(Γ′\{l}) ⊃

C(Γ′\{l′}). Now it is enough to prove that l 6∈ C(Γ′\{l′}). Suppose the contrary. Then we

can construct an admissible sequence starting with l′ and l, so C(Γ′\{l}) = C(Γ′\{l′, l}).

However, this is impossible because the lengths of all maximal admissible sequences coin-

cide and depend only on the graph, so that we come to a contradiction.

The fourth statement can be proved by induction if we can prove the following: for a

subgraph Γ′ and a line l ∈ Γ′ we have VΓ′ = xlVC(Γ′\{l}) + Ṽ. Suppose the contrary and

pick a monomial M = xl1 . . . xlj in V not divisible by any monomial in VC(Γ′\{l}). Consider

the maximal admissible sequence of lines {l1, . . . , lk} corresponding to the variables of M

such that x ∈ C(Γ′\{l1, . . . , lk}). We can deduce that k = j − 1; indeed if k would be less,

then there would be two lines corresponding to variables in M such that the deletion of any

of those and clearing the graph results in removal of x. However due to part 3 this means
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that the deletion of any of those lines and clearing leads to the removal of the other line,

and that is impossible since {l1, . . . , lj} is admissible, so that we come to a contradiction.

An alternative proof of the fourth statement: it is necessary to find a 2-tree T1 con-

tributing to VΓ{l1,...,lj}
such that T2 ⊃ T1 for a given 2-tree T2 contributing to Ṽ. To do

this, we first delete all the lines l1, . . . , lj from the given 2-tree T2. Then we start from the

rest of the lines of T2 and construct a 2-tree of Γ{l1,...,lj} using Way 1 of section 2.

Let us prove the fifth statement by induction on the number of lines in a graph.

Suppose the contrary. Then there is some non-zero vector v orthogonal to all the

weights of VΓ′ . We have
∑

viai = 0 for all monomials xa1

1 . . . xan
n of VΓ′ . Let us choose

some line l of Γ′ and the corresponding variable v. The
∑

viai is constant for all monomials

in VC(Γ′\{l}). But the function VC(Γ′\{l}) factorizes into the product of similar functions for

s-irreducible components, therefore
∑

viai is constant also for all s-irreducible components

of C(Γ′\{l}). By induction we know that the indices vi are constant on each of those

irreducible components (the induction statement is equivalent to the statement that only

the vectors proportional to {1, . . . , 1} have the same scalar product with all weights).

Therefore we have shown that if two lines can be included into one s-irreducible subgraph

then the indices vi on those lines coincide. Consequently all indices vi coincide, so
∑

ai = 0

for all monomials. A contradiction.

Now we are ready to prove that the strategies result in the same sectors. To do this we

are going to prove that the steps of different strategies coincide. We are going to prove it

by induction, where the induction statement is that after i steps corresponding to removing

{l1, . . . , lk} the sectors coincide and the minimal weights of the current function are exactly

the weights of VC(Γ′) where Γ′ = C(Γ\{l1, . . . , lk}).

Let us prove the induction step. First of all let us suppose that the current graph Γ′

is s-irreducible. The Speer sector strategy suggests to compare all variables corresponding

to lines of Γ′ and to choose the highest one. However due to the induction statement,

the lowest weights of the current function for strategy S are the weights of VC(Γ′). Those

monomials are of the same degree but according to statement 5, the linear span of those

weights coincides with all possible weights of monomials with variables corresponding to

Γ′. Consequently the only way to choose a face of maximal rank visible from the origin is

to make it coinciding with the set of weights of VC(Γ′). The normal vector of this face has

coinciding coordinates, therefore the sector decomposition steps coincide.

Now let us analyze what happens with the function VΓ′ after such a sector decompo-

sition step. Let us choose a sector and a variable x greater than the others. According to

statement 2, VΓ′ = xVΓ′
{l}

+ Ṽ where Ṽ is not divisible by x. The sector decomposition step

consists of multiplying all other variables by x, hence after the step it is the function VΓ′
{l}

that contains the monomial of minimal degree after the variable replacement. Moreover,

according to statement 4, all monomials of Ṽ are divisible by some monomial of VΓ′
{l}

, and

it is exactly what we need to finish the induction step.

The only thing left to do is to analyze what happens for s-reducible subgraphs. Inside

the Speer sectors strategy we have to treat all irreducible components independently. How-

ever the function VΓ′ factorizes into functions corresponding to those components, therefore

the same is valid for Strategy S.
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